
www.manaraa.com

InfoShield: A Security Architecture for Protecting
Information Usage in Memory

Weidong Shi Joshua B. Fryman1 Guofei Gu
Hsien-Hsin S. Lee Youtao Zhang2 Jun Yang3

School of Electrical and Computer Engineering, College of Computing, Georgia Tech
1Programming System Lab, Corporate Tech. Group, Intel Corporation

2Dept. of Computer Science, University of Pittsburgh
3Dept. of Computer Science and Engineering, University of California, Riverside

leehs@gatech.edu {shiw, guofei}@cc.gatech.edu joshua.b.fryman@intel.com zhangyt@cs.pitt.edu junyang@cs.ucr.edu

ABSTRACT
Cyber theft is a serious threat to Internet security. It is one of the ma-
jor security concerns by both network service providers and Internet
users. Though sensitive information can be encrypted when stored in
non-volatile memory such as hard disks, for many e-commerce and
network applications, sensitive information is often stored as plain-
text in main memory. Documented and reported exploits facilitate an
adversary stealing sensitive information from an application’s mem-
ory. These exploits include illegitimate memory scan, information
theft oriented buffer overflow, invalid pointer manipulation, integer
overflow, password stealing trojans and so forth. Today’s computing
system and its hardware cannot address these exploits effectively in
a coherent way. This paper presents a unified and lightweight so-
lution, called InfoShield, that can strengthen application protection
against theft of sensitive information such as passwords, encryption
keys, and other private data with a minimal performance impact. Un-
like prior whole memory encryption and information flow based ef-
forts, InfoShield protects the usage of information. InfoShield ensures
that sensitive data are used only as defined by application seman-
tics, preventing misuse of information. Comparing with prior art,
InfoShield handles a broader range of information theft scenarios in
a unified framework with less overhead. Evaluation using popular
network client-server applications shows that InfoShield is sound for
practical use and incurs little performance loss because InfoShield
only protects absolute, critical sensitive information. Based on the
profiling results, only 0.3% of memory accesses and 0.2% of executed
codes are affected by InfoShield.

1. INTRODUCTION
The leakage of sensitive information in network servers can re-

sult in serious consequences. First of all, any disclosure of credential
information such as a login account with password can assist adver-
saries in gaining privileged accesses to computing facilities. Also,
theft of user information such as credit card numbers, social secu-
rity numbers, and other personal information is a major concern of
companies offering online services. The loss in revenue due to cy-
ber vandalism and information theft is in billions of dollars annually
[6]. There are many techniques that can be applied by a remote or
local adversary to compromise data privacy. These techniques in-
clude, but not limited to, password stealing worms/trojan horses [32,
27], memory scans using either legitimate or malicious software [15],
theft or destruction of private or system data via buffer overflow ex-
ploits [20], as well as stealing sensitive information through altering

memory pointers, data offsets, or array indices [20].
The causes of data privacy violation are diverse, so are the solu-

tions. In fact, there are very few studies in the past that directly ad-
dress the problems from the aforementioned attacks. In many cases,
data privacy often comes as a by-product of safe programming prac-
tices using either security analysis tools or an intrinsically safe source
language. For example, special compiler and program analysis tools
[5, 16, 4] were developed to reduce the risks of buffer overflow and
memory reference errors. This approach indirectly mitigates the risk
of disclosing sensitive data through these types of exploits. Two par-
ticular research areas that directly address the issue of data safety are
access control and information flow analysis [7, 29, 10, 1]. As we will
show later, traditional access control approaches do not provide suf-
ficient protection on information safety because the OS-based access
control is too coarse-grained. On the other hand, using static infor-
mation flow analysis to ensure privacy and security of information is
sometimes too restrictive [21] for real applications where sharing or
disclosing information is mandatory and frequent.

In this paper, we present a new approach, termed InfoShield, to
protecting the privacy of sensitive information based on information
usage. As can be readily seen from Internet viruses and spyware, mis-
use of information is one major threat to information security. Many
attacks stem from abnormal or unauthorized usage of information.
For example, a password or encryption key must be strictly used for
access authentication by the designated functions based on a specific
control flow. Any other usage of the information, e.g. memory scan or
following a different control flow path, should be considered unsafe
and prohibited to prevent a security breach. Specifically, the major
contributions of this paper are:
• Addressing the issue of information usage safety and its implica-

tions to defending real attacks to information privacy.
• Presenting a novel architecture called InfoShield that enforces

proper usage of sensitive data according to program definition or
semantics at runtime.
• Proposing lightweight hardware solutions to facilitate and accel-

erate the process of information usage protection.
The unique characteristics of information usage based protection

on data privacy are:
• Improved data privacy. The notion of information usage safety

is proposed based on vulnerability analysis and exploits to address
real threats. Particularly, the usage verification and authorization
are performed at runtime on-demand due to the dynamic nature
of information usage.

2250-7803-9368-6/06/$20.00/©2006 IEEE

www.manaraa.com

• Increased enforceability. The proposed InfoShield is easily en-
forceable for real software systems where information is frequently
shared or disclosed. It leaves the decision of what information
can be shared or disclosed to the software developers, therefore
avoiding the overprotection problem associated with traditional
information flow based protection. It enforces protection on us-
age of sensitive information by ensuring that the data can only
be used in a specific way by the designated program according to
pre-defined program semantics.
• Optimized performance. InfoShield guarantees proper usage of

information at a fine granularity (down to each word in memory).
It verifies the usage of information at runtime by replacing some
LD/ST operations with security-aware equivalents. Using archi-
tectural support, InfoShield can achieve real-time protection of
information usage with negligible performance loss.
• Composable security. The proposed protection on information

usage is orthogonal to other language based schemes on program
security. It provides composable security by allowing it to be
combined with other techniques such as information flow based
protection. For example, static information flow based analysis
can be applied first to ensure that a program is written properly
and there is no leakage of private information based on program
semantics. Then, information usage protection guarantees that
information is used exactly as defined, precluding any undesired
disclosure of sensitive data.

The remainder of the paper is organized as follows. In Section 2,
we discuss threats on information privacy caused by information mis-
use. Section 3 presents the InfoShield architecture. Section 4 and
Section 5 examine security issues and evaluate the performance of
InfoShield. Section 6 is an overview of related work, and finally Sec-
tion 7 concludes the paper.

2. THREAT MODELS
There are many software exploits that can result in disclosure of

sensitive information. These exploits can be either launched by re-
mote attackers or local access adversaries.

2.1 Attacks on Information
2.1.1 Memory scan

Memory scanning is one of the most straightforward ways to search
for sensitive information stored in either application or kernel mem-
ory. If adversaries know the whereabouts of the secret information,
their job would be much easier. If adversaries have local access, they
can use memory dumping tools that often can access higher privilege
memory [15]. For remote exploits, techniques such as memory resi-
dent worms, Trojan horses, or malicious dummy kernel drivers can be
used. After loading in memory, such malware can periodically scan
application or even kernel memory for sensitive information. When
found, the malware can send the information out without the knowl-
edge of the data owner. As shown in [15], many important data can
be easily recovered by a simple keyword-based scan of memory. For
example, the iDefense security advisory [11] documents a number
of memory scan attacks for logon credentials applicable to popular
network clients including PuTTY ssh2 client, SecureCRT, and Abso-
luteTelnet.

There are three basic memory scan techniques that allow adver-
saries to identify secrets in an application’s virtual memory. First,
they can search for a pivot string such as “password” or “ssh-connection.”
The real password and encryption key is often stored at a location with
fixed offset from the pivot string [11]. Second, adversaries can run a
local copy of the same system and reverse-engineer the likely loca-
tions where sensitive data may be stored [15]. Third, entropy-based

analysis can be used to discover encryption keys stored in random
places of a server memory [28]. The effectiveness of this technique
to break encryption keys has been demonstrated by a commercial key
finding tool developed by nCipher [35].

2.1.2 Invalid input
Another technique is to manipulate input data to make the victim

application misbehave, disclosing sensitive data (in)voluntarily. For
example, the Linux kernel allows a local adversary to obtain sensitive
kernel information by gaining access to kernel memory via vulnera-
bilities in the /proc interfaces. One documented vulnerability with
32- to 64-bit conversions in the kernel [20] allows insecure modifi-
cation of file offset pointers in the kernel using the file API (such
as open and lseek). Through carefully orchestrated manipulation of
file pointers, a /proc file can be advanced to a negative value that
allows kernel memory to be copied to user space. These vulnerabil-
ities allow a local unprivileged attacker to access segments of kernel
memory which may contain sensitive information. A similar exam-
ple is a flaw in the FreeBSD process file system (GENERIC-MAP-
NOMATCH) [20]. In the uiomove system call, a local attacker can
set the uio offset parameter of struct uio to extremely large or neg-
ative values, to cause the function to return a portion of the kernel
memory, e.g. terminal buffers, which could contain a user-entered
password. Aside from the OS kernel itself, device drivers and other
vendor-centric software also reside in the kernel space. Vulnerabil-
ity of these modules can also be exploited. For instance, the Linux
e1000 Ethernet card driver had a flaw that unbounded input can be
redirected as an input for the copy to user function, causing kernel
memory to be returned (CAN-2004-0535) [20].

2.1.3 Buffer overflow
Buffer overflow [2], a traditional exploit technique, allows attack-

ers to overwrite data in an application’s stack or heap with arbitrary
data or malicious code. The injected code, if executed, helps the
attacker gain access to sensitive information. Adversaries can also
elevate their privilege level by running injected code through buffer
attacks. A specific form of buffer overflow is the format string attack
[26] that exploits any vulnerability of a format specifier (e.g., “%n”)
in standard C functions. The existence of the format string attack in
some cases allows sensitive information to be disclosed without code
injection. One example is the documented Mac OS X pppd format
string vulnerability (CAN-2004-0165) [20]. When pppd receives an
invalid command line argument, it will eventually pass it as a format
specifier to vslprintf(), which can be exploited to read arbitrary data
out of pppd’s process. When the system is used as a PPP server un-
der certain circumstances, it is also possible to steal PAP/CHAP au-
thentication credentials by exploiting the format string vulnerability
without code injection.

2.1.4 Worms and Trojan horses
A large number of worms and Trojan horses are concocted to com-

promise users or system information [32, 27]. As studies indicate, ap-
proximately 90% of Trojan horses found in circulation today are from
online services. A significant number of them try to steal sensitive in-
formation such as login IDs or passwords. Examples of such Tro-
jans include W32/Eyeveg-B, VBS/LoveLetter.bd, BadTrans.B, and
Lirva [27]. These respectively attack online-banking customer ac-
counts, send compromised information to an email address, or steal
password by crawling through ICQ, email, or peer-to-peer file sharing
systems. Lirva can even disable antivirus and security applications.

The aforementioned exploits on information privacy achieve their
goal through misuse of information or through induced software mis-
behavior. Sensitive information such as passwords and crypto keys
should be strictly used only by the designated codes rather than a
third party software such as memory scan tools. Memory reference

226

www.manaraa.com

manipulation through invalid input or buffer overflow are obviously
abnormal information usage. Note that these kind of exploits can-
not be prevented by a simple shutdown of all the output channels. In
many cases, the victim software is supposed to disclose certain infor-
mation. However, through maliciously induced changes on pointers
or memory offset, other (sensitive) information is disclosed instead.

2.2 Assumption of Attack Models
Note that InfoShield is designed for an enterprise computing envi-

ronment, where theft of sensitive user or system information through
any attack is a major concern. However, our simple implementation
is useful for any domain that has security concerns, such as consumer
products. InfoShield is not for countering sophisticated physical or
side-channel attacks that require a skill set that exploits bus traffic
using a logic analyzer or oscilloscope. We assume that the com-
puting platforms are physically secured. Furthermore, we are only
concerned about certain critical information such as credit numbers,
social security numbers, passwords, login accounts, encryption keys,
etc. Protecting the usage of all data is often unnecessary and too
costly. Also note that InfoShield assumes integrity protection on ap-
plication code, namely, semantics of the application code cannot be
arbitrarily changed. This assumption is in fact required by almost all
the runtime based information security schemes including dynamic
tracking of information flow [31] and proof carrying program execu-
tion [22, 23]. Simple solutions based on trusted computing systems
such as LaGrande Technology can have programs signed or certifi-
cated. Integrity of the signed program code can be verified before it
is executed and memory pages of the verified codes are marked write-
protected. More rigorous protection on program integrity such as [9]
can be also employed to prevent even runtime tampering with code
integrity. Code signing itself does not provide protection for data pri-
vacy.

3. INFOSHIELD ARCHITECTURE
Under the concept of information usage safety, what can be dis-

closed or what can be shared is determined by the application and
programmers. It is assumed that the program was properly written
and audited, such that it shares or discloses only information that
should be shared or disclosed. Then InfoShield enforces at runtime
that sensitive information is used only in the way defined during pro-
gram development.

3.1 Information usage safety
In this subsection, we compare the differences among several meth-

ods for information safety and address the necessity of information
usage safety. As mentioned in Section 1, access control provides only
a limited coarse-level data protection in memory. Attacks such as in-
jected code, memory scan, or input manipulation cannot be prevented
by simple user level or OS based access control. Another concept is
information flow safety [1, 7, 10, 29]. According to this notion, in-
formation is labelled based on its privilege or security level, and an
information flow tracking mechanism assures that privilege informa-
tion does not flow to a channel with lower privilege or lower security
levels. Information flow safety is a powerful concept but sometimes
becomes too restrictive. For example, an encryption key is consid-
ered as a high security level item. Assuming that a user wants to send
low privilege information, but prefers to have it encrypted first, then
the encrypted data will carry information about the encryption key.
The consequence is that the resulting encrypted information should
also be considered as a high security and thus unsafe to be shared or
disclosed. An alternative concept, called computational safety is used
to address this problem. According to this concept, a piece of infor-
mation (although carrying high privilege information) is considered
safe to be disclosed if it is computationally infeasible to extract the

sensitive information from the disclosed data. Based on this concept,
disclosing or sharing encrypted data is a safe operation if the encryp-
tion algorithm can ensure computational safety. Some efforts have
been made in the past on finding a middle ground between these two
concepts to avoid the problem of overprotection based on traditional
information flow analysis [33, 17]. Table 1 summarizes the differ-
ences of the three information safety concepts.

However, information flow safety and information usage safety are
complementary to each other since they address different aspects of
information security. The former can be applied to decide what infor-
mation is safe to be disclosed by program semantics, while the latter
guarantees that no information misuse occurs according to the defined
semantics. Note that there are many subtle differences between infor-
mation flow and information usage. For example, a program may
have two components, A and B, with each one disclosing a piece of
information, a and b, at the same security level. According to in-
formation flow safety, A can also disclose information b. However,
based on information usage safety, A cannot disclose b if this opera-
tion is not defined according to the program semantics. This prevents
malicious exploits on pointers of A to make them point to b.

3.2 Protection on information usage
Here we present a protection scheme for information usage secu-

rity that uses real-time authorization codes in the application. The
necessary program alterations can be generated directly by a secu-
rity enhanced compiler or by a separate information usage security
analysis tool which does binary rewriting.

The basic idea of real-time protection of information usage are:
1) permission to use sensitive information is granted dynamically,
exactly according to application semantics; 2) usage of information
is dynamically verified to ensure that it conforms with the defined
usage; 3) improper access attempts cannot compromise data confi-
dentiality. Integrity of the application information usage is verified
throughout the program execution. At the micro level, InfoShield
guarantees that:
• Sensitive information is used only in the order defined by the ap-

plication.
• Sensitive information is used only by the instructions that must

use them.
• The user is assured that no misuse of information occurs if no

exceptions are raised.
Our proposed implementation of InfoShield defines new architec-

tural instructions for supporting information usage safety. These new
operations combine regular access instructions with additional func-
tionality for tracking security state. InfoShield will only protect usage
of information in memory, which is sufficient for countering most of
the exploits described in Section 2.

Conceptually, the implementation of information usage protection
is simple. Consider a hypothetical example where an encryption key
is created and then used. At the declaration of the encryption key or
its pointer, the programmer annotates the source code that the con-
tents of the key are sensitive. When the storage of the key is created,
(e.g. by malloc), the compiler records the returned address with the
annotation indicating that it is an address for sensitive data. Prior to
passing the pointer to the surrounding code for proper handling, the
compiler injects additional instructions to guard the data contents. In
a separate hardware table, this address of the key is entered along
with the PC of the next instruction that can access the contents of this
address. Every load/store operation checks this table to ensure that no
access occurs when the PC is not the designated next-access PC by
the compiler. Such violations raise an exception bit for later handling.

Each attempt to use the sensitive information must come from an
authorized instruction. Since each instruction authorizes the next in-

227

www.manaraa.com

Information flow safety [1, 7] Computational safety [33, 17] Information usage safety (InfoShield)
The encrypted result is generated using a secret key.
All the bits of encrypted result carry details of the key
and are considered un-safe to be disclosed

The encrypted result is computationally safe to be dis-
closed. It is not feasible to extract the key from the
encrypted data.

The encrypted result is safe to be disclosed if it is based
on correct execution of the function and there is no
misuse of the key.

Table 1: Comparison of Information Safety Models

struction dynamically and instruction memory is read-only, no vio-
lation can occur. Since every load/store operation must check the
security address table, and only compile-time authorized instructions
can read/write the data, all non-Trojan attacks are effectively blocked.
The only vulnerability is the initial registration of an address to be
guarded. However, any preemptive capture of the protected data lo-
cation will either result in the proper guard instruction failing, or the
proper guard instruction taking control over the next-authorized PC
field. In either case, no violation of the security occurs such that
sensitive information is revealed. The intricacies of handling func-
tion calls, register spills, garbage collection, and so forth are detailed
later.

3.2.1 Instruction extensions
The security-aware instruction extensions we propose require a

limited hardware support in the processor along the lines of a prim-
itive cache or register file with CAM lookup capability as shown
in Figure 1. Primarily, a structure that can be indexed like a regis-
ter file for secure address testing is required. However, the address
field in the structure must also be searchable like a CAM. While a
full implementation is possible without this unit, performance would
be substantially degraded. An overview of the instruction extensions
is shown in Table 2, where the fields referenced are from Figure 1.

Valid VAddr Low VAddr High NextPC Low NextPC High
SR0
SR1

SRN−1
Figure 1: Security-aware Register (SR) Hardware Table.

There are three principle design axioms that ensure correct oper-
ation with negligible performance impact: (a) each Security-Aware
(SAx) operation is atomic; (b) programs, including the OS, are in
read-only memory pages; and (c) while LD/ST operations may be
common, LD/ST operations to sensitive data are rare. To walk through
an example, Figure 2(a) is a simple C program snippet, with Fig-
ure 2(b) a pseudo-assembly listing for (a). An extension to gcc pro-
vides the “secure” attribute on line 1.

In the assembly listing, after the instruction at 0xA004 has exe-
cuted, no interception of the protected data is possible. Any attempt
to take control over a later instruction requires that no prior security
aware instruction executed properly. Similarly, any attempt to divulge
memory through stack or pointer manipulation will trigger an excep-
tion to the application.

Under InfoShield’s threat model assumption, a hacker cannot di-
rectly modify the original software code (protected with code sign-
ing, runtime integrity check and execution only pages). But hackers
can send invalid input or hijack control flow. All the SAx instructions
of an application form a chain of information usage authorization.
Protected sensitive data will not be disclosed through control hijack
in the middle of the chain because it violates semantics of SAx in-
structions. A hacker may insert SAx instruction ahead of an SAx
instruction chain. But those illegal SAx instructions will fail the first
legitimate SAP instruction, thus no sensitive information will be re-
vealed. Also note that applications always store sensitive data to a
memory location after a SAP that declared that location. If a SAP
instruction cannot find a matching entry in the SR table, it means that
it is the first SAP instruction of a SAx instruction chain. In this case,
the first SAP’s PC is not checked.

 .org $0100
_attribute secure long long *key 0x0100 .word key

 .org $1000
 0x1000

key = malloc(sizeof(long long)); 0xA000 call _malloc ; r1 = ptr
 0xA004 add r2, r1, #8 ;securing 8 bytes
 0xA008 mov r3, #0xB00C ; start of next-valid PCs
 0xA00C mov r4, #0xB014 ; end of next-valid PCs
 0xA010 sag r0 ; get next free security slot
 0xA014 sap r0, r1, r2, r3, r4 ; enable protection
 0xA018 mov r7, r1 ; r7 is the beginning of the

secure data
 0xA01C push r0 ; save r0 for later

 0xAFFC pop r0 ; recall our slot
*key = srand(); 0xB000 call _srand ; r1 = random data
 0xB004 mov r2, #0xC008 ; start of next-valid PCs
 0xB008 mov r3, #0xC00C ; end of next-valid PCs
 0xB00C st r1, [r7] ; write to the key slot
 0xB010 sas r0, r2, r3 ; slide protection window
 0xB014 push r0 ; save the slot

 0xBFFC pop r0 ; recall our slot
 0xC000 mov r2, #0xD020 ; prepare next valid PC block
 0xC004 mov r3, #0xD0A0 ; big switch statement...
 0xC008 ld r1, [r7] ; secure read key val
 0xC00C sas r0, r2, r3 ; slide the protection window
 0xC010 push r0 ; save our slot
err = encrypt (data, *key); 0xC014 call encrypt ; make call; r1 S bit set!

(a) (b)
 Figure 2: (a) Example of C program snippet (b) corresponding secu-

rity aware assembly code.

3.2.2 Non-restrictive addressing
The security aware extensions (SAG, SAP, etc.) place no restric-

tions on addressing modes. In particular, there are no specific instruc-
tions to load or store data at protected addresses. This is achieved by
checking every load/store operation against the protected addresses in
the SR table by testing the effective (virtual) address. A mechanism
for removing this check from the critical path is presented later.

The result of this model is that the security aware extension in-
structions only manipulate security information, and not data – with
the exception of the SAM instruction. The need for the SAM instruc-
tion is presented in the garbage collection analysis below. Therefore,
all of the standard memory addressing modes – direct, register offset,
and so forth – work without modification. Only at retirement time
will the security check results be used to accept or reject the results
of any load/store operation.

3.2.3 Function calls
Protection of information usage across function calls is also sup-

ported. There are two basic methods for handling argument passing.
If all programs (and programmers) adhere to a convention that only
the address of a sensitive data location is passed as an argument, never
the contents, then no further architectural support is necessary. How-
ever, considering the large volume of existing software passing argu-
ments by registers for which simple recompilation will not repair, as
well as the inability to ensure that programmers always follow safe
practices, additional architectural changes will be needed to handle
secure usage regardless of programmers’ behavior.

First, we extend each register beyond its basic data and control
state to include a security aware flag. The flag is an indicator that this
specific register was read or written from a registered security aware
region. Any other register derived from this register has its security

228

www.manaraa.com

Instruction Behavior Purpose
∃ n & SR[n].Valid == 0 ⇒ Get the first free

SAG Rd RF [Rd]← n SR table entry and return
SR[n].Valid← 1

Set Address Guard else CCR[SX]← 1 else throw an exception
∀ n , ∃ m ∈ ((RF [Ral]..RF [Rah])

((SR[n].valid == 1) & Verify that this PC is in
(SR[n].VAl ≤ m≤ SR[n].VAhi)) ⇒ the permitted group to

Err← Err | SR[RF [Rd]].Valid == 0 | setup target protection;
¬[(PC ≥ SR[n].PClo) | (PC ≤ SR[n].PChi)]

CCR[SX]← Err if no Err, proceed to
SAP Rd, Ral, Rah, Rpl, Rph SR[RF [Rd]].PClo← RF [Rpl] set up the valid code window

SR[RF [Rd]].PChi← RF [Rph] that can access a memory
Set Address Protection SR[RF [Rd]].Valid← 1 block [Ral:Rah] and set the

SR[RF [Rd]].VAlo← RF [Ral] next-valid instruction PC
SR[RF [Rd]].VAhi← RF [Rah] range to [Rpl:Rph] in SR table
Err← (SR[RF [Rd]].Valid == 0) |

(PC ≤ SR[RF [Rd]].PClo) | (PC ≥ SR[R f [Rd]].PChi) Verify this PC can slide
SAS Rd, Rpl, Rph CCR[SX]← Err the next-instr window; if ok,

SR[RF [Rd]].PClo← RF [Rpl] set up the valid code window
Secure Address Shift SR[RF [Rd]].PChi← RF [Rph] that can access a memory

Err← (SR[RF [Rd]].Valid == 0) |
(PC ≤ SR[RF [Rd]].PClo) | (PC ≥ SR[R f [Rd]].PChi) Verify this PC can clear

CCR[SX]← Err the protections; if ok,
const == 0 ⇒ do we need to clean memory to

Mem[SR[RF [Rd].VAlo..SR[RF [Rd]].VAhi]← 0 prevent leaking of sensitive information?
SAC Rd, #const

SR[RF [Rd]].PClo← 0 Clear out and free the corresponding
Secure Address Clear SR[RF [Rd]].PChi← 0 entry in SR table, regardless.

SR[RF [Rd]].Valid← 0
SR[RF [Rd]].VAlo← 0
SR[RF [Rd]].VAhi← 0
∀ n, ∃ m ∈ (RF [Ras]..RF [Rae])

(SR[n].valid == 1 & SR[n].VAlo≤ m≤ SR[n].VAhi)) ⇒ Over the start-end source range,
Err← Err | (SR[n].VAlo 6= RF [Ras]) | (SR[n].VAhi 6= RF [Rae]) be sure it’s a perfect match,

CCR[SX]← Err otherwise throw an exception;
SAM∗ Ras, Rae, Rad ∀ n, SR[n].VAlo == RF [Ras] ⇒ for every range match, fix the

SR[n].VAhi← RF [Rad]+SR[n].VAhi−SR[n].VAlo guard to point to the new addr
Secure Address Move SR[n].VAlo← RF [Rad] block for post-move security

∀ addr ∈ [RF [Ras]..RF [Rae]] ⇒ and then set up the actual
Mem[RF [Rad]+ (addr−RF [Ras])]←Mem[addr] Moving protected data,
Mem[addr]← 0 erasing the source

Table 2: Security Aware instruction extensions (SAx) that manipulate the SR table. PC is the PC of the currently executing instruction. If no error
is encountered, the actual instruction behavior is then executed. RF denotes the main register file and Mem is memory, while SR is the security
register set and the CCR is the condition-code register with the SX bit corresponding to a security exception condition, causing a fault. The ∀
searching nature suggests the use of CAM cells for the given field in the SR table. ∗This instruction is only executable from super-user mode (i.e.,
typically via a kernel syscall).

bits set accordingly (i.e., any xor, add, shift, etc. that uses a “secure”
register value automatically becomes “secure” flagged). Any attempt
to execute a load/store operation on any register which is annotated as
secure enabled requires the same authorization step – namely, passing
the security check from the SR table. If this security check fails, then
the contents must be encrypted prior to writing to memory.

3.2.4 Register spills, Page tables
One drawback to the enhancement in the register file is the in-

ability for backing up and restoring secure-aware flag during regis-
ter spills. This is handled by exploitation of the ECC memory bits
[25]. The ECC memory bits, which are typically unused, provide ap-
proximately one extra bit per machine word. With registers marked
“secure”, the only way to preserve the integrity of sensitive infor-
mation is to encrypt the store to memory. However, the encryption
process cannot expand the machine word via padding or other meth-
ods. Therefore, we propose to use the ECC bit corresponding to each
machine word as an encrypted data flag. When storing to memory
from a secure register to an insecure location, the contents are en-
crypted with a key embedded in the processor. There may be several
such keys used on a random basis to reduce the chance of brute-force
attacks. Regardless, during write-out the ECC bit is set. When that
memory location is read back, the ECC bit indicates that the contents
need to be decrypted and that the secure bit in the register file should
be set. Otherwise any load from a non-secure memory location resets

the security bit in the register file for the destination register.
The exploitation of ECC bits, however, gives rise to the problem of

page tables and swapping to disk. In general, the practice of swapping
secure or encrypted information to disk should not be encouraged.
In the specifics of our InfoShield system, we require that any page
that contains secure or ECC-flagged encrypted data must be pinned
in memory. Therefore, it cannot be swapped to disk to risk sensitive
information disclosure or the loss of the ECC encryption bits that
indicate scrambled memory contents.

By presenting an argument where encryption exists internal to the
processor, a strong question is whether just encrypting all sensitive
data is sufficient without our proposed architectural changes. In re-
ality, just encrypting memory in this manner is vulnerable to a brute
force attack, since the contents of memory can still be read. With the
restrictions on padding, brute force attacks are possible. Our solu-
tion, however, prevents the attacker from even reading the contents of
secure memory from the running process, which eliminates the brute
force approach. Compromising another process and reading this pro-
cesses memory is of little use since any other process will not know
which memory is encrypted and which memory is not.

3.2.5 Garbage Collection and Block Copy
Many modern languages, as well as older languages with support

libraries, provide garbage collection systems. Garbage collection (GC)
violates the abstractions introduced here to protect sensitive memory.

229

www.manaraa.com

By nature, GC tries to walk through all of dynamic memory to facili-
tate compaction and freeing of bulk heap space. However, with no a
priori knowledge, GC systems will inadvertently attempt to access or
move protected memory, causing security exceptions.

Our solution is via a privileged security-aware move instruction
(SAM in Table 2). This instruction is capable of moving the contents
of protected memory, but is unable to return the contents of protected
memory or to alter the next-authorized instruction windows. Its pur-
pose is primarily to support GC algorithms of any type. A typical
GC that runs on a security aware platform would have to implement
exception handlers to catch security violations (i.e., via sigaction()
and friends). During GC data movement, any movement that causes
the security exception to be returned turns into an iterative per-word
movement until the protection region is found and the complete pro-
tected region size is determined. Once found, a syscall is made to
the OS to request privileged movement of the sensitive data from the
old to new address. This movement does alter and update the address
range in the SR table, yet it does not impact the authorized PC in the
application. While our solution does require minor modifications to
any general GC implementation, once implemented it will work for
all programs. The same technique is also applicable to secure block
copy operations using library routines such as memcpy().

On those architectures supporting complex memory-to-memory copy
operations, such as a string copy or “movs” instruction in x86, the
principle is similar. Such CISC instructions are actually decoded into
a series of µops to set up a loop and execute individual load/store op-
erations. If any µop load/store fails due to a security violation, the
re-order buffer is tagged as receiving the security exception for the
original movs instruction. This in turn can be caught by signal han-
dlers which switch from movs to the iterative block copy routines.

3.2.6 Multiple consumers or producers
Certain coding constructions such as virtual tables, switch state-

ments, and function pointer lookups create scenarios where there may
exist multiple valid next-target PCs. Even simple code hammocks
may try to access sensitive data or create sensitive container in each
path, requiring some mechanism for support.

First, we support defining of regions that cover instructions which
may access sensitive data. Rather than have several entries, we can
define a large window of code that continually operates on sensitive
data, when the sensitive information is first put under guard a first-
next-PC and a last-next-PC may be specified. Second, we support
multiple entries in the SR table for a given sensitive address. That
is, if address 0xA000 is protected, multiple SAP entries may have
this address for different consumers of the data. That we support this
repetition in the secure register table is the reason the “for all”(∀) con-
structs exist in Table 2 security extension instructions. In particular,
any instruction attempting to register additional next-valid PCs must
be itself authorized.

3.2.7 Context switching
A potential issue for any security method that uses write-only ar-

chitectural state as our SR table is handling a context switch. Since
no instruction is capable of reading the contents of any SR register
field, support for context switching must be moved into the necessary
supporting instructions. We expect that every process has a private
process space in memory for storing context information. If a unique
key exists inside each system, then the hardware may write the SR ta-
ble to the process space in memory encrypted with the secure key. No
additional overhead or management by the OS is required. Since the
addresses in the SR table are all virtual, no side effects of operations
such as page table modification will impact the security features.

3.2.8 Dynamic or shared libraries
Verification of secure information usage across dynamic libraries

����������	

��������

�
�������������

������	���
��

������

���������������

�������

����������	

��������	

������������

�����	���
���

����������	

�������
���

��� ��� � �

Figure 3: Trojan DLL

is not trivial, since frequently the caller has no precise knowledge of
the callee code that will use sensitive information. To make things
even worse, systems such as Windows use DLLs heavily for nor-
mal execution of applications. This allows third-party DLLs to be
inserted or hooked into an application program that can intercept and
detect messages communicated between applications and libraries, as
well as between different libraries [12]. The types of information that
can be intercepted include passwords, account ids, keystrokes, and so
forth.

Figure 3 shows three ways of exploiting a typical Windows DLL
vulnerability for information theft. First, a malicious DLL that has the
same name as a legitimate DLL (such as wsock32.dll, the Windows
system DLL responsible for network connections) can be injected
into user or kernel space. The malicious DLL exports all the symbols
of the original DLL and hijacks all calls to the original DLL. It inter-
cepts sensitive information from a hijack before delegating the call to
the original DLL function. For example, a worm can install a mali-
cious wsock32.dll and rename the original as something else. Then
each time after the system is booted, network applications such as
IE will call the malicious wsock32 for transmitting passwords, user-
name, credit card numbers, etc. The hijack DLL can examine the data
before forwarding them to the original DLL. If sensitive information
is found, it may mail it out to an outside email account. Second,
an information stealing Trojan can replace or patch the original DLL.
The new DLL contains malicious code that can disclose sensitive data
to outside world. Examples of such attacks are socket Trojans such
as Happy 99 [27] and Hybris [27]. Third, Windows allows arbitrary
DLLs to be hooked into an application’s memory space [12]. Any
malicious DLL downloaded either by an Internet worm or unwillingly
invited to the system as a Trojan horse can be hooked into an applica-
tion’s memory space. This DLL will register a callback function for
handling sensitive user information. Many password stealing or key-
board input logger trojans are based on the vulnerability of Windows
hooks [8].

InfoShield tackles this issue through a sequenced signature veri-
fication, which relies on a safe signing/certification of libraries with
versioning. During application development, calls to external libraries
are annotated with a required library version and the library public
key in use at compile-time. This signature and version information
is embedded in the application image. During the initialization of
the main() sequence, all required external libraries are pre-loaded and
their OS fingerprints are checked. This process involves the operat-
ing system loading and verifying the internal signature of the library,
ensuring that no tampering has taken place from what the original de-
veloper provided for certification. This OS fingerprint is followed by
verifying the developer signature on the library code with the appli-
cations’ embedded public key.

Within any DLL that manipulates sensitive information, protection
is enforced by a policy of secure instruction placement within the
DLL function body. This policy can easily be enforced by the com-
pilers. The premise to the policy is that as versions of a DLL change,
there is no safe a priori method for knowing which instruction within
a DLL function foo will be the first to require security permissions.
Therefore, on entry any function that will manipulate sensitive data

230

www.manaraa.com

���������	
��	�	

���	�
���

�	����
��	������

���
���
����

���
���
������	������
	������	���

��

�� �	

���
���
�����
!

�"
 ���

����#�	�	�
�����

�	������
	$�	#�����

%����

�$�	#�����

Figure 4: Decoupling SR table check and lazy update of ROB.

must execute as its first instruction the necessary setup for the secure
permissions within the body of that function. Therefore, even if the
first working instruction that uses sensitive data is moved to a new
address during version changes, the external program is unaware and
the system operates normally.

Given the condition that DLLs or other shared libraries are signed
and certified, applications can seal sensitive data based on the signa-
ture/certificate. This simple solution prevents almost all variants of
the three exploit scenarios using Trojan or malicious library hooks.
For DLL hijacking, the internal application version signatures will
fail to match resulting in aborted execution. In the case of DLL re-
placement, the malicious code module will have a different signature,
thus it cannot properly unseal the information since each signature
generates a unique key. The third scenario of DLL hooks can also be
prevented in a manner similar to the case of DLL hijack.

3.2.9 Critical Path
One potential performance downside in InfoShield is caused by the

fact that every load/store operation must check the SR table. This is
likely to become the critical path in the memory pipeline. We propose
to decouple the SR table check such that it is off the critical path
entirely, with the SR check results pushed into the reorder buffer for
evaluation at retirement.

Our proposed change is shown in Figure 4. As effective addresses
(EAs) are moved into the memory hierarchy for access, the EA and
its associated PC (along with the ROB target) are also passed to the
SR table. Once the pipelined SR lookup resolves whether the access
is valid, it updates the two SX bits in the reorder buffer to indicate that
checking is complete (bit 0), and whether an exception was generated
(bit 1). During retirement, any incidence of a violation in the SX bit
causes a fault to be generated. This can then be handled by the OS,
or passed to the user for signal handling.

4. SECURITY ASSESSMENT AND LIMITA-
TION

InfoShield is a novel scheme for protecting usage of sensitive data
against local and remote software exploits. It is aimed to counter
realistic attacks on disclosing sensitive user or system information
through: 1) direct or covert memory scan by malware [15]; 2) invalid
input to an application or function call (CAN-2004-0415, CAN-2004-
0535, GENERIC-MAP-NOMATCH) [20]; 3) buffer overrun based
information theft (CAN-2004-0165)[20], or 4) malicious DLL hooks
or API hijacking Trojan [8, 32, 27].

Using special dynamic protection on information usage, InfoShield
can enhance the assurance that sensitive data is used, shared or dis-
closed in the way as defined by application semantics. InfoShield im-
proves protection on data privacy against many documented attacks,

exploits or vulnerabilities. One advantage of InfoShield is that it is
compatible with the current software system model. It supports pro-
grams or libraries from different sources (sometimes un-trusted) to
inter-operate and co-exist in the same memory space. More impor-
tantly, InfoShield does not require that every program component in
an application’s memory space must be benign, exploit-free or bug-
free. However, InfoShield does not prevent all the possible attacks or
exploits on data privacy, especially information theft using sophisti-
cated physical attacks. Specifically, InfoShield protects sensitive in-
formation stored in the memory from
• theft through memory scan
• leakage through function call interception
• unwanted disclosure via hacker induced pointer/index overflow
In reality, there is no silver bullet for solving all the data privacy

issues and exploits. It is preferred that a combination of many tech-
niques such as a firewall, safe programming, or information flow anal-
ysis with InfoShield be used to prevent cyber theft. Furthermore, In-
foShield assumes separate protection on program integrity. It requires
that code image is properly signed with digital signature and certified.
Given a program that is properly designed, InfoShield ensures that
during execution there is no misuse or abnormal use of information
caused by many real local or remote exploits. When a process finishes
using sensitive data, InfoShield’s erase operation resets the memory
state preventing accidental leakage [3]. The OS can also ensure that
memory pages allocated to a user process are properly cleared. InfoS-
hield also assumes that applications are executed in released mode in-
stead of debug mode. Debug mode execution often needs random ac-
cess to memory that would require break of InfoShield protection. To
prevent production application from being executed in debug mode,
we extend the signed code image with a special debug mode disable
flag. For released software, this flag is set. Since the code image is
signed and certified, it is not possible to wiggle the flag without being
detected.

5. EVALUATION AND ANALYSIS
To evaluate the idea of information usage protection and the specifics

of InfoShield design, we used a number of network applications that
manipulate sensitive user data such as a login password, cryptographic
keys, or other credentials. A straightforward implementation of In-
foShield can be achieved by extending the ISA and adding necessary
compiler support. For evaluation purpose, we manually identify sen-
sitive data based on the application source and annotate the applica-
tion for emulation-based evaluation. We used a open-source IA32
full system emulator — Bochs [14] which models the entire platform
including the network device, VGA monitor, and other devices to sup-
port the execution of a complete off-the-shelf OS and its applications.
We use the memory tainting technique similar to that in [3]. Different
from the objective of [3]’s study that focused on proper cleanses of
sensitive information after their lifetime, we focus on the guarantee
of proper usage of sensitive data during their lifetime.

We used RedHat distribution of Linux as our target system. We
evaluated eight network server/client applications. They are file trans-
fer server (wu-ftp daemon), web server (Apache http daemon), email
sever (imap daemon), ftp client, a text based web browser called
Lynx, an email client Pine, Openssh daemon (sshd) and Openssh
based secure file transfer server (sftp). We manually annotated each
application’s source code such that sensitive data “live ranges” are ex-
plicitly exposed to the Bochs emulator. The implementation is similar
to the memory tainting technique in [3]. In addition to memory taint-
ing, we also applied register tainting that keeps track of instructions
operating on sensitive data.

5.1 Sensitive Information and Usage Protection

231

www.manaraa.com

For all the eight applications, we identified the global and local
variables for storing the sensitive information and the program codes
that operate on the information. To avoid unnecessary over-protection,
we consider only the following information as critical sensitive data
that requires InfoShield protection,

5.1.1 User password
All Unix and Linux applications use the well-known shadow pass-

word authentication approach. On the server side, user passwords
are stored in an encrypted format or cryptographically encoded for-
mat. This is done by invoking crypt function with the input text set
to NULL and the key set to be the password. Crypt is a one way
hash function. This is an algorithm that is easy to compute in one
direction, but very difficult, if not impossible, to calculate in the re-
verse direction. When a user picks a password, it is cryptographically
encoded with crypt along with a salt value. Note that salt itself is
not sensitive data. The result, i.e. shadow password, is stored in the
hard disk. When a user logs in and supplies a password, the supplied
password is cryptographically encoded and then compared with the
encoded shadow password loaded from disk. If there is a match, then
the user is authenticated. During the authentication process, user’s
password will reside in the server’s memory space and vulnerable to
memory scan, pointer overflow, or crypt function interception attacks.
We can use InfoShield to ensure that during user password’s lifetime,
it is only used by the proper authentication routines as defined by the
program semantics. Applications can declare the password’s memory
space as sensitive after it is first time loaded into memory.

5.1.2 Openssh host key
Openssh uses the well-known asymmetric key approach for user

authentication. For each server, there is at least a pair of private and
public keys. In general, only the private key is considered as sensi-
tive and requires protection. In Openssh implementation, private keys
are stored in a global data structure called ”sensitive data”. Openssh
memsets sensitive data to zero after they are no longer needed. To
protect private keys from theft during its lifetime, we declare their
memory space as sensitive data and apply InfoShield protection. It
ensures that only the private key authentication routine can access
those keys in the way as defined by the authentication semantics.

5.1.3 AES cryptographic keys
For each data channel, Openssh uses AES standard for encryp-

tion and decryption. For each new connection, Openssh daemon will
spawn a new child process. The AES keys are stored in each child
process’s memory space and used for network data encryption/de-
cryption. The AES key’s lifetime spans from the beginning to the end
of a connection. During this time, it is vulnerable to attacks such as
memory scan and invalid pointer/array index exploits. In our evalu-
ation, we declared AES keys as sensitive information. The require-
ment is that they can only be used by the AES encryption/decryption
routines based on the AES implementation. Any other access includ-
ing access from other part of the Openssh daemon is considered as a
protection violation of InfoShield.

Note that we only treat the original password and cryptographic
key as sensitive information. Password digests or encrypted pass-
words or encrypted keys are not considered as sensitive data. In real
systems, password digests or encrypted passwords are not treated as
secrets and often stored in files that allow public access.

5.2 Analysis of Performance Impact
The performance impact of InfoShield on application execution

is very small given that comparing with the whole application, the
amount of data and code that handles passwords, cryptographic keys
or other sensitive data is small. To verify this projection, we used the
memory tainting technique that keeps track how sensitive data is ac-

cessed during its lifetime. The goal is to show that the overall number
of memory accesses to the sensitive data and the total number of in-
structions directly operating on the sensitive data during any sensitive
lifetime are both negligible.

In our evaluation, all the applications are tested in real-time with
Bochs emulation. We used automatic scripts whenever possible or
manual interaction. For OpenSSH, the test consists of connecting to
the server, login with authentication, and run a list of popular shell
commands. To simulate an ssh server scenario, the test included four
concurrent ssh connections. For sftp, the test consists of connecting
to the server with authentication, upload and download a set of files.
To simulate a server setting, the test used six concurrent sftp connec-
tions. Test of wu-ftp server was similar to the sftp test case except it
used wu-ftp server instead of the OpenSSH ftp server. For Apache,
the Bochs emulated server hosts a website where access to the web-
pages requires proper user authentication. The test uses wget, a popu-
lar command line web page download tool. It automatically supplies
download requests with user password and recursively downloads all
the web pages from an URL. For imap server (an email server), the
test consists of running a python script that automatically connects to
the server as a user with password, and retrieves all the emails. For
ftp client, the test is similar to the ftp server test with the difference
that the client not the server is executed in the emulated platform.
Both Pine and Lynx are client applications that require user interac-
tion. Test of Pine consists of connecting to a mail server, supplying
password and reading received emails. Test of Lynx consists of con-
necting to a web server, browsing some webpages that require user
authentication. The middle column of Table 3 shows the number of
profiled instructions for each application.

Applications Instruction Count Sensitive memory blocks
required per process

OpenSSH 887803740 18
sftp 1430629493 18
httpd (Apache) 809343773 1
ftpd 575053604 1
imapd 795433147 1
ftp 564446668 1
Pine 656122506 1
Lynx 1189131107 1

Table 3: Dynamic Instruction Count and Sensitive Memory Blocks

With the Bochs emulator, we are able to measure the percentage of
accesses to the sensitive information comparing with the total number
of regular memory accesses. Figure 5 shows the results. For five of
the eight tested applications (ftpd, imapd, ftp client, Pine, and Lynx),
the percentage is less than 0.002%. For OpenSSH, the percentage is
0.1% and for sftp, 0.6%. Apache has the highest percentage of 1.8%.
One of the contributing factors why Apache has so many accesses
than others is that Apache verifies password for each file downloaded
from a server. Typically, one webpage may contain hundreds of small
files. This leads to frequent access to user password. OpenSSH ap-
plications have more frequent access due to the reasons that they use
AES to encrypt/decrypt every network packet. The average is 0.3%.

Figure 6 shows the percentage of dynamic instructions that directly
operate on sensitive information (load instruction included). For all
the tested applications, the percentage is below 1%. For some appli-
cations, the number is below 0.001%. The average is 0.2%.

Results in Figure 5 and Figure 6 show that for typical applications,
the amount of memory reads and dynamic instructions dealing with
sensitive information are both very small. Since InfoShield has per-
formance impact only on the part of application codes that handle
sensitive information, its overall performance impact would be very
small.

232

www.manaraa.com

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

openssh

sftp
httpd(apache)

ftpd
imapd

ftp pine
lynx

average

Pe
rc

en
ta

ge
 o

f D
yn

am
ic

 A
cc

es
se

s o
f S

en
sit

iv
e

D
at

a
lo

g%

Figure 5: Percentage of accesses to passwords and keys over all mem-
ory accesses (log scale of % data).

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

openssh

sftp
httpd(apache)

ftpd
imapd

ftp pine
lynx

average

Pe
rc

en
ta

ge
 o

f D
yn

am
ic

 C
od

es
 O

pe
ra

tin
g

on
 S

en
sit

iv
e

D
at

a
lo

g%

Figure 6: Percentage of dynamic instructions directly operating on
sensitive information (log scale of % data).

For all the tested server applications, for each new connection, the
server process will spawn a new child process for processing the new
connection. The number of sensitive data regions is really small if
considered at per-process basis. For shadow password authentication,
the number is one (region where plaintext user password is stored).
For OpenSSH, the number is six per process. Based on the test result,
increasing the number of concurrent connections does not affect the
number of sensitive data regions per process as each new connection
is handled by a separate child process.

5.3 Sizing the Security Register Table
To determine the number of slots required in the SR Table, as out-

lined in Section 3.2.1, the same benchmarks were evaluated for their
unique contiguous regions of memory that contain sensitive informa-
tion. The result of this analysis is shown in the third column of Ta-
ble 3. They suggest that the SR table itself can be kept quite small,
less than 32 entries even for complex applications. These values rep-
resent the secure regions over the complete dynamic lifetime of an
application, and do no consider that not all regions may be active at
the same phase of execution. The small requirements for the table
also result in faster access and lower power dissipation.

6. RELATED WORK
There are many approaches proposed before to address the protec-

tion of information privacy using either software or hardware mecha-
nisms. InfoShield, however, is the first one as to our knowledge that
protects dynamic usage of information according to program seman-
tics.

6.1 Proof carrying code
Proof carrying code is a concept that users of a program can ver-

ify the safety of a program provided by an untrusted source. Using
formal methods and first order logic, the program carries with itself
a proof that it will abide with certain clearly-defined safety policies

of the user. The proof can be verified by the user before execution.
If the proof can be verified, the user can be convinced that the pro-
gram is safe to be executed [22]. Proof carrying code has been ex-
tensively studied for mobile code security where producers of mo-
bile code provide proofs and consumers of mobile code validates the
proof. However, writing proof carrying code program is a daunting
task for regular programmers as it requires understanding of formal
logic and safety theorem proving. Another issue is that it is not clear
whether the proof system is powerful enough to capture all the secu-
rity constraints of a software system. In contrast, information usage
safety is a much simpler concept and protection of information usage
as proposed in this paper can be fully automated.

6.2 Information flow analysis
Information flow analysis is a language based technique that ad-

dresses the concern on data privacy by clarifying conditions when
flow of information is safe. Through information flow analysis [7,
29], it can be enforced that high privilege and high security level in-
formation would not flow to channels with low privilege or low secu-
rity level. Information flow based protection constraints unsafe flow
of information. Recently, dynamic tracking of information flow for
protecting data privacy using hardware approach is also proposed to
confine flow of information in execution time [31]. As we have ad-
dressed before, there are many differences between the concept of
information flow safety and information usage safety. Unlike infor-
mation flow safety, information usage safety itself does not restrict
sharing and disclosing of information as long as such operations are
carried out according to program semantic.

6.3 Safe language based protection
Another language based effort to secure data privacy is strongly

typed language that ensures type safe access of private information
[13]. For example, a type safe language defines what operations a
piece of code can perform on objects or data of a particular type. Type
safety can be either enforced statically such as Java or dynamically at
run-time. Information usage safety and InfoShield are different from
language type safety based protection. Information usage as proposed
provides more protection on information because it restricts that the
protected information be only used in a specific manner while type
safety only ensures that the information is operated by operations that
can access the type of data.

6.4 Static language based checks
There are compiler and programming language based techniques

that automatically check buffer overflow or memory reference bugs
in application source code [5, 4]. Those techniques can mitigate
some of the risks of disclosing sensitive data by ensuring that the
applications satisfy certain safety standards. However, different from
InfoShield, they cannot provide real-time safeguard on the access and
usage of information.

6.5 Memory reference monitor and Mondrian
Hardware based memory protections such as virtual memory pro-

tection, user/supervisor execution levels, process memory space iso-
lation and etc are based on checking the privilege of addresses is-
sued by executing instructions to the memory. As we have addressed,
these protections provide only very coarse level protection on mem-
ory and they cannot prevent exploits using malicious code residing in
the same memory space as the application or exploits that induce mis-
behavior of the application to disclose sensitive information. Mon-
drian is a hardware architecture motivated to provide fine-grained ac-
cess control on memory at small granularity such as word level [34].
The memory state of InfoShield is also fine-grained with each 32-
bit dword having its own state. In this aspect, it is similar to Mon-
drian. But the similarity ends here. Mondrian is not designed to han-

233

www.manaraa.com

dle many of the exploits or vulnerabilities on data privacy mentioned
in this paper.

6.6 Hydra
Hydra [18] was one early object-oriented capability-based system

which separated access control mechanism from security policy. Fol-
low up operating system such as KeyKOS [24] also used similar idea
of capability. A capability is a token that designates an object and
indicates a specific set of authorized actions (such as reading or writ-
ing) on that object. Every object in the system was protected and any
access required capabilities. InfoShield is very different from Hydra-
like capability-based systems. First, Hydra-like systems divide every-
thing into objects and enforce access control on every objects which
lead to a system that is too general and complex. InfoShield is a
simple and efficient mechanism which only aims to protect critical
information in memory. Second, Hydra-like systems only care about
the access control of objects, it cannot enforce proper sequences of
information usage according to the program definition or semantic in
real execution time.

6.7 Tamper resistant systems
Tamper resistant systems using memory encryption [19, 30] are

related in the sense that tamper resistant systems also provide data
privacy by storing encrypted data in memory. There are many funda-
mental differences between InfoShield and tamper resistant systems.
First, InfoShield is designed for protecting data privacy against many
software based exploits and vulnerability without using memory en-
cryption. Overhead of InfoShield is much smaller than [19, 30]. Sec-
ond, InfoShield enforces information usage safety (information used
exactly the way as defined by application) while current tamper re-
sistant systems do not have this notion. It is believed that tamper
resistant systems are also vulnerable to exploits of pointer references,
array indexes. Also it is not clear how tamper resistant system based
software platform supports DLL hooks and tackles trojan horse injec-
tion. InfoShield solves these issues without the assumption of mem-
ory encryption.

7. CONCLUSION
This paper presents InfoShield that provides architectural and pro-

gramming support to protect usage of sensitive information against
many documented attacks and exploits on data privacy including mem-
ory scan, pointer/array index manipulation, integer overflow, format
string attacks, and password-stealing trojans. By embedding special-
ized verification and tracking instructions inside the applications, In-
foShield is capable of ensuring that secrets such as passwords and
access credentials are accessed only in the way as defined by the
given application. Such authenticated information usage provides a
safer environment for network applications where disclosure of sen-
sitive information due to remote or local software exploits is a major
concern. Comparing with prior works on protection of data privacy,
InfoShield is a much light-weight alternative and would incur much
less performance penalty based on application profiling.

8. ACKNOWLEDGMENT
This work is supported in part by NSF grants CCF-0326396, CCF-

0447934, CCF-0430021, CNS-0325536, and a DOE Early CAREER
Award.

9. REFERENCES
[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A Core Calculus of

Dependency. In Proceedings of the ACM Symposium on Principles of
Programming Languages, 1999.

[2] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November 1996.

[3] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Understanding
Data Lifetime via Whole System Simulation. In USENIX Security Symposium,
2004.

[4] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. FormatGuard:
Automatic Protection From printf Format String Vulnerabilities. In USENIX
Security Symposium, 2001.

[5] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In USENIX Security Symposium, 1998.

[6] CyberCrime. http://www.ssg-inc.net/cyber crime/cyber crime.html.
[7] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Commun. ACM, 20(7):504–513, 1977.
[8] B. Friesen. Passwordspy - retrieving lost passwords using windows hooks.

http://www.codeproject.com/.
[9] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and Hash

Trees for Efficient Memory Integrity Verification. In Proceedings of the Ninth
Annual Symposium on High Performance Computer Architecture, 2003.

[10] N. Heintze and J. G. Riecke. The SLam calculus: programming with secrecy and
integrity. In Proceedings of the ACM Symposium on Principles of Programming
Languages, 1998.

[11] iDefense. http://www.idefense.com/advisory/01.28.03.txt.
[12] I. Ivanov. Api hooking revealed. http://www.codeproject.com/.
[13] A. K. Jones and B. H. Liskov. A language extension for expressing constraints on

data access. Commun. ACM, 21(5):358–367, 1978.
[14] K. Lawton. Welcome to the Bochs x86 PC Emulation Software Home Page.

http://www.bochs.com.
[15] A. Kumar. Discovering passwords in the memory.

http://www.infosecwriters.com/text resources/, 2004.
[16] D. Larochelle and D. Evans. Statically Detecting Likely Buffer Overflow

Vulnerabilities. In USENIX Security Symposium, 2001.
[17] P. Laud. Semantics and Program Analysis of Computationally Secure Information

Flow. In Proceedings of the 10th European Symposium on Programming
Languages and Systems, 2001.

[18] R. Levin, E. Cohen, W. Corwin, and W. Wulf. Policy/mechanism Separation in
Hydra. In Proceedings of the ACM Symposium on Operating Systems Principles,
1975.

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. B. J. Mitchell, and M. Horowitz.
Architectual support for copy and tamper resistant software. In Proceedings of the
9th Symposium on Architectural Support for Programming Languages and
Operating Systems, 2000.

[20] MITRE. http://cve.mitre.org/.
[21] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.

ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.
[22] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages
106–119. ACM Press, 1997.

[23] G. C. Necula and P. Lee. Efficient representation and validation of proofs. In
Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science,
1998.

[24] N.Hardy. The keykos architecture. In Operating Systems Review, 1985.
[25] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for Detecting

Memory Leaks and Memory Corruption During Production Runs. In International
Symposium on High-Performance Computer Architecture, 2005.

[26] Scut. Exploiting format string vulnerabilities. 2001.
[27] SecurityResponse. http://securityresponse.symantec.com/.
[28] A. Shamir and N. van Someren. Playing hide and seek with stored keys.
[29] G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative

Language. In Proceedings of the Symposium on Principles of Programming
Languages, 1998.

[30] E. G. Suh, D. Clarke, M. van Dijk, B. Gassend, and S.Devadas. AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant Processing . In
Proceedings of The Int’l Conference on Supercomputing, 2003.

[31] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An Architectural
Framework for User-Centric Information-Flow Security. In Proceedings of the
37th International Symposium on Microarchitecture, 2004.

[32] VirusLibarary. http://www.viruslibrary.com/.
[33] D. Volpano and G. Smith. Verifying Secrets and Relative Secrecy. In Proceedings

of the Symposium on Principles of Programming Languages, 2000.
[34] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory Protection. In

Proceedings of the Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2002.

[35] www.ncipher.com.

234

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

